Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7531, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161051

RESUMO

Forecasting volcanic ash atmospheric pathways is of utmost importance for aviation. Volcanic ash can interfere with aircraft navigational instruments and can damage engine parts. Early warning systems, activated after volcanic eruptions can alleviate the impacts on aviation by providing forecasts of the volcanic ash plume dispersion. The quality of these short-term forecasts is subject to the accuracy of the meteorological wind fields used for the initialization of regional models. Here, we use wind profiling data from the first high spectral resolution lidar in space, Aeolus, to examine the impact of measured wind fields on regional NWP and subsequent volcanic ash dispersion forecasts, focusing on the case of Etna's eruption on March 2021. The results from this case study demonstrate a significant improvement of the volcanic ash simulation when using Aeolus-assimilated meteorological fields, with differences in wind speed reaching up to 8 m/s when compared to the control run. When comparing the volcanic ash forecast profiles with downwind surface-based aerosol lidar observations, the modeled field is consistent with the measurements only when Aeolus winds are assimilated. This result clearly demonstrates the potential of Aeolus and highlights the necessity of future wind profiling satellite missions for improving volcanic ash forecasting and hence aviation safety.

2.
Q J R Meteorol Soc ; 145(Suppl 1): 176-209, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31787783

RESUMO

Since the first International Cooperative for Aerosol Prediction (ICAP) multi-model ensemble (MME) study, the number of ICAP global operational aerosol models has increased from five to nine. An update of the current ICAP status is provided, along with an evaluation of the performance of ICAP-MME over 2012-2017, with a focus on June 2016-May 2017. Evaluated with ground-based Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and data assimilation quality MODerate-resolution Imaging Spectroradiometer (MODIS) retrieval products, the ICAP-MME AOD consensus remains the overall top-scoring and most consistent performer among all models in terms of root-mean-square error (RMSE), bias and correlation for total, fine- and coarse-mode AODs as well as dust AOD; this is similar to the first ICAP-MME study. Further, over the years, the performance of ICAP-MME is relatively stable and reliable compared to more variability in the individual models. The extent to which the AOD forecast error of ICAP-MME can be predicted is also examined. Leading predictors are found to be the consensus mean and spread. Regression models of absolute forecast errors were built for AOD forecasts of different lengths for potential applications. ICAP-MME performance in terms of modal AOD RMSEs of the 21 regionally representative sites over 2012-2017 suggests a general tendency for model improvements in fine-mode AOD, especially over Asia. No significant improvement in coarse-mode AOD is found overall for this time period.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...